

Phytoremediation: A Promising Technology for sustainable Environmental Management - A Review

Mrs. B. Rukmini Devi

Assistant Professor of Botany
Government Degree College Narsapur
Medak District, Telangana

DOI:10.37648/ijrst.v16i01.002

Received: 19 November 2025; Accepted: 31 December 2025; Published: 17 January 2026

ABSTRACT

The environment is increasingly polluted by contaminants produced by anthropogenic activities such as mining, fossil fuels burning, agro chemicals, and fertilizers. These pollutants have negative impacts on the biosphere and human health. The need to clean our environment is crucial for several reasons. Phytoremediation is a novel technology that offers prominent advantages over conventional methods used for environmental clean-up. Phytoremediation is a new approach in which plants used to remove or degrade pollutants. In recent years phytoremediation has emerged as a promising technology for sustainable environmental remediation. This review provides a comprehensive overview of the current state of phytoremediation, highlighting its mechanisms, and potential for mitigating environmental pollution.

In this review we discuss phytoremediation, phytoextraction, phytodegradation, phytostabilization, and phytovolatilization, and examine the plant species. This review also explores the applications of phytoremediation in cleaning up contaminated soil, water, and air, and highlights its potential for addressing emerging pollutants. Furthermore, we discuss the challenges and limitations of phytoremediation and propose future directions for research and development.

Phytoremediation is a cost effective environmental friendly technology developed by scientists in which microorganisms and living plants both are used to remove pollutants from the environment. This green technology can be applied to remove pollutants without causing any damage to soil structure. Overall, this review describes the potential of phytoremediation as a sustainable and eco-friendly solution for environmental pollution.

Keywords: *Phytoremediation; environmental pollution; anthropogenic activities; sustainable solution; plant-based remediation; pollution mitigation; phytoextraction; phytostabilization; phytovolatilization; phytodegradation.*

Introduction

Phytoremediation is a green technology that uses plants to clean up pollutants in the environment. This method has received a lot of attention in recent years because it can help reduce the harmful effects of pollution on human health and ecosystems. As the world faces pollution, climate change, and the need for sustainable development, phytoremediation stands out as a hopeful answer for cleaning up our environment.

¹ How to cite the article: Devi R.; January 2026; Phytoremediation: A Promising Technology for sustainable Environmental Management - A Review; *International Journal of Research in Science and Technology*, Vol 16, Issue 1, 14-22, DOI: <http://doi.org/10.37648/ijrst.v16i01.002>

Definition of Phytoremediation: The term phytoremediation derived from the Greek prefix "phyto," which means plant, and the Latin suffix "remedium," meaning "to clean" or "restore" (Cunningham et al. 1997).

Background and Significance:

Environmental pollution arising from human activities including agriculture, industrialization, urbanization poses great risks to both human health and ecosystems. The growing demand for agro products leads to increased use of pesticides, use of fertilizers, and unnecessary use of heavy metals in the industry causes environmental pollution. Phytoremediation is a green and sustainable method of tackling these problems that uses the plant's natural capabilities to remediate environmental pollutants, using the plant's natural abilities and processes.

Objectives :

This review is providing a comprehensive overview of the current state of phytoremediation, including the mechanisms, implications and future opportunities of phytoremediation.

This review provides a comprehensive overview of the field of phytoremediation to highlight the using potential of phytoremediation to mitigate the pollution challenges caused by environmental pollutants. In particular, we discuss several techniques of phytoremediation including the current methodologies of phytoextraction, phytodegradation, phytostabilization, and phytovolatilization.

This review is also revealing the potential of plant species, genetic engineering, and microbial involvement that could increase phytoremediation efficiency.

This review indicates the potential for phytoremediation for the removal of contaminants in soil, water, air, and emerging pollutants, As well as discussing the challenges and limitations together with future scope for the field of phytoremediation. Ultimately, this review has confirmed the potential of phytoremediation as a sustainable, and ecofriendly approach for addressing environmental pollutants, and we have indicated its potential for creating a healthier and more sustainable environment.

Types of Phytoremediation techniques:

1. Phytoextraction: Phytoextraction involves the use of plants to absorb pollutants from the soil or water and accumulate them in their tissues. This is particularly useful for removing heavy metals and other inorganic pollutants.

2. Phytodegradation: Phytodegradation involves the breakdown of organic pollutants by plants using enzymes and other biochemical processes. Phytodegradation is useful in removing pollutants such as pesticides, herbicides, and industrial contaminants.

3. Phytostabilization: Phytostabilization involves the use of plants to immobilize pollutants in the soil, reducing their bioavailability and toxicity. Phytostabilization is used to reduce the risk of pollutant mobilization and leaching.

4. Phytovolatilization: Phytovolatilization involves the use of plants to absorb pollutants and release them into the air as volatile compounds. This phytovolatilization technique is used to remove pollutants such as selenium and mercury.

5. Rhizodegradation: Rhizodegradation involves the breakdown of pollutants in the rhizosphere, the region of soil surrounding plant roots. Petroleum hydrocarbons and polycyclic aromatic hydrocarbons (PAHs) are removed by rhizodegradation technique.

6. Rhizofiltration: Rhizofiltration uses the roots of plants to uptake and filter contaminants from water. Rhizofiltration is effective at removing heavy metals and nutrients from wastewater. Vetiver grass (*Chrysopogon*

zizanioides) has effectively been tested for rhizofiltration for chromium removal from tannery effluents. Each type of phytoremediation technique has different advantages and disadvantages, and the selection of technique is dependent on the type and level of pollution.

Advantages of Phytoremediation:

1. Cost-effective: Phytoremediation can be less cost-effective compared to traditional remediation technologies like excavating and disposing of waste.
2. Sustainable: As a physical environmental remediation approach that has long life-spans that can function with limited maintenance, phytoremediation can be considered a sustainable approach to environmental remediation.
3. Eco-friendly: Phytoremediation uses existing environmental systems without bringing in any harmful chemicals. It may take longer than traditional environmental remediation solutions, but it does not negatively impact the environment.
4. Minimal disruption: Phytoremediation is minimally disruptive to the surrounding environment and ecosystem and does not involve major excavations or modifications to the environment.
5. Can be used with other technologies: Phytoremediation can be successfully utilized with other approaches, such as bioremediation or chemical remediation that can complement and strengthen.
6. Potential for carbon sequestration: Some of the plants used in phytoremediation may also sequester carbon as well, making it a potential climate mitigation strategy too.
7. Can improve soil health: Phytoremediation can improve not only remove pollutants that reduce soil health but introduce soil biota that are favourable for soil health too.
8. Potential for community participation skills development: Phytoremediation can incorporate education with successful community engagement that promotes greater awareness and involvement in environmental remediation.

Challenges and Limitations:

1. Plant Selection: Selection of plants is an important step in phytoremediation.
2. Climate and Soil: Climate and soil conditions can affect phytoremediation.
3. Potential for Release of Contaminants: Inappropriate management of phytoremediation could result in the release of contaminants to the environment, e.g., by fall of leaves, root decay, etc.
4. Limited Use: Phytoremediation may not be appropriate for all contaminants and contaminated sites; e.g., sites with very toxic contaminants or complex mixtures of pollutants may not be suitable for phytoremediation.
5. Time: Phytoremediation is often considered a slow process, because it may take years or even decades to achieve the desired amount of pollutant removal.
6. Not Effective at High Concentrations: Phytoremediation may not be effective for sites with very high concentrations of contaminants, and may require the use of additional remediation technologies.
7. Obligated to Monitor/Manage: Because phytoremediation may not be wholly effective, it typically requires monitoring and possibly active management, and may introduce issues which could cause environmental harm.

8. Public Acceptance: Phytoremediation may not receive public acceptance because of its perceived effectiveness and how it might tie to other options for remediation.

These limitations emphasize the consideration and planning needed to implement phytoremediation as a remediation technique when needed.

Applications of Phytoremediation:

1. Air remediation: Phytoremediation can be used to remove volatile pollutants from the air.

2. Soil remediation: Phytoremediation can be used to clean up contaminated soil.

3. Water remediation: Phytoremediation can be used to remove pollutants from water.

Phytoremediation involves several steps that work together to clean up pollutants in the environment.

Mechanism of Phytoremediation: The following steps involved in phytoremediation mechanism:

1. Site Characterization: The first step in phytoremediation is to characterize the site and determine the type and extent of the contamination. Site characterization is performed by collecting and analyzing soil, water, and plant samples to identify the types of contaminants and their concentrations.

2. Plant Selection: The second step is to select the appropriate plant species for phytoremediation. This includes selection criteria for plant species that can tolerate the types of contaminants present on the site, and can effectively accumulate or degrade the contaminants.

3. Planting: The third step involves planting the plant species selected for phytoremediation at the contaminated site. This may involve direct sowing or transplanting of seedlings.

4. Planting Maintenance: Once planting has occurred, plants should be maintained and allowed to grow. Maintenance includes adequate watering, nutrients, and other necessary growing conditions.

5. Pollutant Uptake and Accumulation: While the plants are growing, the plants uptake contaminants from contaminated soil or water through their roots. Pollutants are then transported to the shoots and leaves of the plant, where they will be degraded or accumulated.

6. Degradation or accumulation: Depending on the type of phytoremediation, the pollutants can be either degraded into less toxic compounds or accumulated in the plant tissue.

7. Harvesting and disposal: After the plants have accumulated the pollutants, they can then be harvested and disposed of in a safe and environmentally friendly manner. Possible methods of disposal include taking the plant material to a landfill or incinerating it.

8. Monitoring and maintenance: The last step in the phytoremediation process is to monitor the site and maintain the plants over time. This can be as simple as monitoring what happens to the pollutants over time in the charged site (e.g. how quickly they are degraded), or monitoring the plants (e.g. level of health, vigor, or disease development throughout the life of the project), and the soil conditions (e.g. whether seasonal climatic conditions altered the growth or health of the plants.) These monitoring actions signify that the phytoremediation project is effective and sustainable, of importance to the overall remediation objectives.

Hyperaccumulator Plants:

Some groups of plants, such as herbs and woody plants, have shown the ability to absorb and accumulate high concentrations of toxic metals. These plants are referred to as hyperaccumulators and they play an important role in phytoremediation, or sustainable cleanup of contaminated sites.

•Herbs: A few herbaceous plant species, such as *Thlaspi caerulescens*(Alpine pennycress) have been studied and found to hyperaccumulate metals like nickel and zinc.

•Woody plants: A few woody plants like *Salix* (willow) and *Populus* (poplar) identify hyperaccumulators to metals, such as cadmium and lead.

Here are some commonly used plants for phytoremediation:**Hyper accumulator Plants:**

1.Indian mustard (*Brassica juncea*): Known for its ability to accumulate heavy metals like lead, chromium, and cadmium.

2.*Hypericum perforatum* (St. John's Wort): Accumulates heavy metals like lead, copper, and zinc.

Plants for Heavy Metal Removal:

1.*Helianthus annuus*: Effective in removing heavy metals like lead, uranium, and cesium.

2.*Salix* spp. : Can accumulate heavy metals like cadmium, copper, and zinc.

3.*Populus* spp. : Can remove heavy metals like lead, copper, and zinc.

Plants for Organic Pollutant Removal:

1.*Typha* spp(Cattails): Effective in removing organic pollutants like polycyclic aromatic hydrocarbons (PAHs) and pesticides.

2.*Phragmites* spp.(Reeds): Can remove organic pollutants like PAHs and volatile organic compounds (VOCs).

3. Grasses: e.g., switchgrass, *Panicum virgatum*

can remove organic pollutants like PAHs and pesticides.

Plants for Water Remediation:

1. *Eichhornia crassipes* (Water hyacinth) : Effective in removing nutrients, heavy metals, and organic pollutants from water.

2. *Lemna* spp.(Duckweed): Can remove nutrients, heavy metals, and organic pollutants from water.

3. *Typha* spp. : Can remove pollutants like nutrients, heavy metals, and organic pollutants from water.

Plants Used in Domestic waste water Remediation:

1.*Acorus calamus*: Used in constructed wetlands for treating domestic sewage

2. *Canna indica*: Effective in removing pollutants from domestic waste water

3. *Catharanthus roseus*: Efficient in removing turbidity, TSS, sulphates, and nitrates from domestic waste water

These plants play an effective role in phytoremediation applications, but the selection of plant species depends on the type and extent of pollution, climate, and other site-specific factors.

Case Studies in India: Phytoremediation is a promising technology for cleaning up pollutants in the environment, and several case studies in India demonstrate its effectiveness.

1. Phytoremediation of Domestic Wastewater: A study published in Applied Ecology and Environmental Sciences reviewed various research studies on phytoremediation of domestic wastewater in India. The study highlighted the effectiveness of plants like *Lemna minor*, *Catharanthus roseus*, and *Hibiscus* in removing pollutants from domestic wastewater.

2. Heavy Metal Removal: Research conducted by CSIR-NEERI, Nagpur, has developed Phytotrid Wastewater Technology for treating different types of wastewater, including domestic and industrial wastewater.

3. Constructed Wetlands: A field-scale study conducted by Barya et al. (2020) demonstrated the effectiveness of *Acorus calamus* and *Canna indica* in treating primary treated domestic sewage through vertical subsurface flow constructed wetlands.

4. Slaughterhouse Wastewater: A comparative study by Alam et al. (2020) showed that *Eichhornia crassipes*, *Lemna minor*, and filamentous algae can be used for phytoremediation of slaughterhouse wastewater, with duckweeds effectively removing TKN, N-NO₃, and N-NO₂, and filamentous algae removing COD and PO₄³⁻.

5. Urban Fish Pond Ecosystems: A study by Das et al. (2018) explored the diversity of phytoplankton in domestic wastewater-fed urban fish pond ecosystems in the Chota Nagpur Plateau of Bankura.

These case studies demonstrate the potential of phytoremediation as a sustainable and eco-friendly solution for environmental remediation in India.

Government Policies and Initiatives Related to Phytoremediation in India:

While there aren't specific policies dedicated to phytoremediation, several initiatives promote sustainable practices and environmental conservation, which can be linked to phytoremediation. Some of them are :

1. PM-PRANAM Scheme: Launched in 2023, this scheme aims to reduce chemical fertilizer consumption and promote natural, organic, and bio-based inputs in farming. It incentivizes states to adopt sustainable practices, which can indirectly support phytoremediation efforts.

2. Bio-Input Subsidy Support: The government provides subsidies to promote the use of bio-fertilizers, organic manures, and bio-pesticides, which can aid in phytoremediation.

3. National Medicinal Plants Board (NMPB) Initiatives: NMPB, under the Ministry of AYUSH, works on conserving and promoting medicinal plants. Recent MoUs signed by NMPB with various institutions aim to strengthen conservation efforts and promote research in medicinal plants, which can be related to phytoremediation.

4. Uttar Pradesh's Phytoremediation Project: The state government plans to use phytoremediation to tackle pollution in biodiversity parks along the Ganga river, showcasing a specific implementation of this technology.

Other Relevant Initiatives

Environmental Conservation Efforts: Various government initiatives focus on environmental conservation, sustainable development, and pollution control, which can create a favorable environment for phytoremediation projects.

Research and Development: Promoting research in the area of phytoremediation and other related fields could lead to new solutions and better application of the technology.

These policies and initiatives represent the government's dedication to environmental sustainability and conservation that would facilitate the application of phytoremediation in India. Phytoremediation is an exciting technology for remediation of the polluted environment and India has been studying its potential.

Below are some future research focus areas and suggestions for phytoremediation in India:

Research Directions:

1. Genetic Engineering: Creating genetically modified plants that can hyperaccumulate heavy metals and other pollutants more effectively.
2. Microbe-Assisted Phytoremediation: Assessing the potential of microorganisms to increase phytoremediation efficiency by improving pollutant uptake and degradation processes.
3. Chelate-Assisted Phytoremediation: Assessing the potential of chelating agents in enhancing heavy metal uptake in plants.
4. Plant selection and breeding: Identifying and breeding plant species that are optimized for phytoremediation in different settings.
5. Large scale field trials: Field testing phytoremediation at large scales to demonstrate its potential.

By working on these future directions, phytoremediation can become a more effective and readily accepted environmental remediation technology.

Recent Studies: Recent research carried out in India investigating phytoremediation has yielded good results, including:

- Native Plant Species: Research has been conducted on native plant species for phytoremediation of heavy metal pollution, including studies of *Butea monosperma*, *Calotropis procera*, *Madhuca indica*, and *Shorea robusta*.
- Constructed Wetlands: Research has been conducted on constructed wetlands with the use of plants like *Acorus calamus* and *Canna indica* for domestic sewage treatment.
- *Lemna minor*: Research has been conducted on the efficiency of *Lemna minor* in removing nutrient load from domestic wastewater.

Conclusion

Phytoremediation has the potential to be a sustainable remediation technology that is both cost effective and environmentally friendly. Phytoremediation is a good approach for reducing pollutants in soil, water or air. This review has provided a comprehensive overview of previous research on the effectiveness of phytoremediation for

various environmental issues including heavy metal pollution and organic wastes pollution, and wastewater treatment, offered potential tools such as the use of hyperaccumulator plants, genetic engineering, or microbe assisted methods to improve efficiency, and acknowledged the potential for better management of specific environmental problems through phytoremediation. There are limitations and associated challenges of phytoremediation as a sustainable, environmentally friendly technology, but with its potential advantages and future applications, phytoremediation can offer improved options for a more sustainable solution for environmental remediation technologies; it can also lead to further advancements in environmental remediation research, which will need investment and development of phytoremediation while also utilizing the advantages offered by sustainable environmental technology.

Phytoremediation enhances the ability to research new, sustainable environmental management technologies and understand the process of how plants can be used for cleaning up different pollutants. If we invest in working out the mechanisms, advantages, limitations and applications of phytoremediation, we will eventually have a promising tool for cleaning up polluted environments.

References

Abhilash, P. C. (2007). Phytoremediation: An innovative technique for ecosystem clean up. *Our Earth*, 4, 7-12.

Barya, M. P., Gupta, D., Thakur, T. K., & Shukla, R. (2020). Performance of phytoremediation by *Acorus calamus* and *Canna indica* for the treatment of primary treated domestic sewage in vertical subsurface flow constructed wetlands: Field-scale study. *Water Practice & Technology*, 15(2), 422–436. <https://doi.org/10.2166/wpt.2020.042>

Cunningham, S. D., & Ow, D. W. (1996). Promise and prospects of phytoremediation. *Plant Physiology*, 110(3), 715–719. <https://doi.org/10.1104/pp.110.3.715>

Cunningham, S. D., Shann, J. R., Crowley, D. E., & Anderson, T. A. (1997). Phytoremediation of contaminated water and soil. In E. L. Kruger, T. A. Anderson, & J. R. Coats (Eds.), *Phytoremediation of soil and water contaminants* (pp. 2–19). American Chemical Society. <https://doi.org/10.1021/bk-1997-0664.ch001>

Dushenkov, D. (2003). Trends in phytoremediation of radionuclides. *Plant and Soil*, 249(1), 167–175. <https://doi.org/10.1023/A:1022527207359>

Ensley, B. D. (2000). Rationale for the use of phytoremediation. In *Phytoremediation of toxic metals: Using plants to clean-up the environment*. John Wiley & Sons.

Fasani, E., Manara, A., Martini, F., Furini, A., & DalCorso, G. (2018). The potential of genetic engineering of plants for the remediation of soils contaminated with heavy metals. *Plant, Cell & Environment*, 41(5), 1201–1232. <https://doi.org/10.1111/pce.13032>

Flathman, P. E., & Lanza, G. R. (1998). Phytoremediation: Current views on an emerging green technology. *Journal of Soil Contamination*, 7(4), 415–432. <https://doi.org/10.1080/10588339891334438>

Indian Council of Agricultural Research. (2019). *Phytoremediation of contaminated soil and water*.

Lasat, M. M. (2002). Phytoextraction of toxic metals: A review of biological mechanisms. *Journal of Environmental Quality*, 31(1), 109–120. <https://doi.org/10.2134/jeq2002.1090>

Microbe-assisted phytoremediation: A review. (2020).

Nguyen, D. T. C., Van Tran, T., Kumar, P. S., Din, A. T. M., Jalil, A. A., & Vo, D. V. N. (2022). Invasive plants as biosorbents for environmental remediation: A review. *Environmental Chemistry Letters*, 20(2), 1421–1451. <https://doi.org/10.1007/s10311-021-01377-7>

Rai, P. K., & Singh, J. S. (2020). Invasive alien plant species: Their impact on environment, ecosystem services and human health. *Ecological Indicators*, 111, 106020. <https://doi.org/10.1016/j.ecolind.2019.106020>

Revathi, K., Harbabu, T. E., & Sudha, P. N. (2011). Phytoremediation of chromium contaminated soil using sorghum plants. *International Journal of Environmental Sciences*, 2(2), 417–428.

Saier, M. H., & Trevors, J. T. (2010). Phytoremediation. *Water, Air, & Soil Pollution*, 205(Suppl 1), S61–S63. <https://doi.org/10.1007/s11270-008-9747-3>

Srivastava, N. K., & Majumder, C. B. (2008). Novel biofiltration methods for the treatment of heavy metals from industrial wastewater. *Journal of Hazardous Materials*, 151(1), 1–8. <https://doi.org/10.1016/j.jhazmat.2007.09.101>

Susarla, S., Medina, V. F., & McCutcheon, S. C. (2002). Phytoremediation: An ecological solution to organic chemical contamination. *Ecological Engineering*, 18(5), 647–658. [https://doi.org/10.1016/S0925-8574\(02\)00026-5](https://doi.org/10.1016/S0925-8574(02)00026-5)

Turan, M., & Esringu, A. (2007). Phytoremediation based on canola (*Brassica napus* L.) and Indian mustard (*Brassica juncea* L.) grown on spiked soil by aliquot volume of Cd, Cu, Pb and Zn. *Plant, Soil and Environment*, 53(1), 7–15. <https://doi.org/10.17221/3188-PSE>